Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 125
1.
Bioresour Technol ; 401: 130713, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641305

The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.


Nitrogen , Phosphorus , Wastewater , Phosphorus/metabolism , Nitrogen/metabolism , Wastewater/chemistry , Wastewater/microbiology , Bacteria/metabolism , Bacteria/genetics , Water Purification/methods , Oxidation-Reduction , Denitrification , Bioreactors/microbiology , Heterotrophic Processes , Ferrous Compounds/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis
2.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622116

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Rho Factor , Transcription Factors , Transcription Factors/metabolism , Virulence/genetics , Rho Factor/genetics , Rho Factor/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacteria/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
3.
Front Bioeng Biotechnol ; 12: 1332113, 2024.
Article En | MEDLINE | ID: mdl-38567082

Tobacco, a vital economic crop, had its quality post-curing significantly influenced by starch content. Nonetheless, the existing process parameters during curing were inadequate to satisfy the starch degradation requirements. Microorganisms exhibit inherent advantages in starch degradation, offering significant potential in the tobacco curing process. Our study concentrated on the microbial populations on the surface of tobacco leaves and in the rhizosphere soil. A strain capable of starch degradation, designated as BS3, was successfully isolated and identified as Bacillus subtilis by phylogenetic tree analysis based on 16SrDNA sequence. The application of BS3 on tobacco significantly enhanced enzyme activity and accelerated starch degradation during the curing process. Furthermore, analyses of the metagenome, transcriptome, and metabolome indicated that the BS3 strain facilitated starch degradation by regulating surface microbiota composition and affecting genes related to starch hydrolyzed protein and key metabolites in tobacco leaves. This study offered new strategies for efficiently improving the quality of tobacco leaves.

4.
Environ Res ; 251(Pt 2): 118575, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431068

The Partial nitritation-Anammox (PN/A) process can be restricted when treating high ammonia nitrogen wastewater containing antibiotics. This study aims to explore the response mechanism of the PN/A process under antibiotic stress. Results showed the PN/A process achieved a nitrogen removal rate higher than 1.01 ± 0.03 kg N/m3/d under long-term sulfamethazine stress. The increase of extracellular polymers from 22.52 to 43.96 mg/g VSS was conducive to resisting antibiotic inhibitory. The increase of Denitratisoma and SM1A02 abundance as well as functional genes nirS and nirK indicated denitrifiers should play an important role in the stability of the PN/A system under sulfamethazine stress. In addition, antibiotic-resistant genes (ARGs) sul1 and intI1 significantly increased by 8.78 and 5.12 times of the initial values to maintain the resistance of PN/A process to sulfamethazine stress. This study uncovers the response mechanism of the PN/A process under antibiotic stress, offering a scientific basis and guidance for further application in the future.

5.
Front Endocrinol (Lausanne) ; 15: 1360499, 2024.
Article En | MEDLINE | ID: mdl-38455652

Introduction: Males with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive. Methods and results: Herein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis. Discussion: In summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI.


Nitric Oxide , Spinal Cord Injuries , Mice , Male , Rats , Humans , Animals , Nitric Oxide/metabolism , Rats, Sprague-Dawley , Testosterone/metabolism , Macrophages/metabolism , Spinal Cord Injuries/complications
6.
Environ Sci Pollut Res Int ; 31(19): 28404-28417, 2024 Apr.
Article En | MEDLINE | ID: mdl-38546918

This study successfully achieved stable nitritation by adding hydrogen peroxide (H2O2) to the nitrification sludge whose nitritation stability had been destroyed. The batch experiment demonstrated that, the activity of ammonia-oxidizing bacteria (AOB) was restored more rapidly than that of nitrite oxidizing bacteria (NOB) after the addition of H2O2, thereby selectively promoting AOB enrichment and NOB washout. When the H2O2 concentration was 6.25 mg/L, the NOB activity was significantly reduced and the nitrite accumulation rate (NAR) was more than 95% after 18 cycles of nitrifying sludge restoration. As a result, H2O2 treatment enabled a nitrifying reactor to recover stable nitritation performance via H2O2 treatment, with the NAR and ammonia removal efficiency (ARE) both exceeding 90%. High-throughput sequencing analysis revealed that H2O2 treatment was successful in restoring nitritation, as the relative abundance of Nitrosomonas in the nitrifying reactor increased from 6.43% to 41.97%, and that of Nitrolancea decreased from 17.34% to 2.37%. Recovering nitritation by H2O2 inhibition is a low operational cost, high efficiency, and non-secondary pollution nitritation performance stabilization method. By leveraging the varying inhibition degrees of H2O2 on AOB and NOB, stable nitrification can be efficiently restored at a low cost and without causing secondary pollution.


Ammonia , Hydrogen Peroxide , Nitrification , Nitrites , Sewage , Ammonia/metabolism , Nitrites/metabolism , Bacteria/metabolism , Bioreactors , Oxidation-Reduction , Waste Disposal, Fluid/methods
7.
Nat Struct Mol Biol ; 31(2): 336-350, 2024 Feb.
Article En | MEDLINE | ID: mdl-38332366

Phosphatidylinositol 3-kinase α, a heterodimer of catalytic p110α and one of five regulatory subunits, mediates insulin- and insulin like growth factor-signaling and, frequently, oncogenesis. Cellular levels of the regulatory p85α subunit are tightly controlled by regulated proteasomal degradation. In adipose tissue and growth plates, failure of K48-linked p85α ubiquitination causes diabetes, lipodystrophy and dwarfism in mice, as in humans with SHORT syndrome. Here we elucidated the structures of the key ubiquitin ligase complexes regulating p85α availability. Specificity is provided by the substrate receptor KBTBD2, which recruits p85α to the cullin3-RING E3 ubiquitin ligase (CRL3). CRL3KBTBD2 forms multimers, which disassemble into dimers upon substrate binding (CRL3KBTBD2-p85α) and/or neddylation by the activator NEDD8 (CRL3KBTBD2~N8), leading to p85α ubiquitination and degradation. Deactivation involves dissociation of NEDD8 mediated by the COP9 signalosome and displacement of KBTBD2 by the inhibitor CAND1. The hereby identified structural basis of p85α regulation opens the way to better understanding disturbances of glucose regulation, growth and cancer.


Cullin Proteins , Ubiquitin-Protein Ligases , Humans , Mice , Animals , Ubiquitin-Protein Ligases/metabolism , Cullin Proteins/metabolism , Insulin/metabolism , Ubiquitination , Protein Binding
8.
Environ Health Perspect ; 132(2): 27011, 2024 Feb.
Article En | MEDLINE | ID: mdl-38381479

BACKGROUND: Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES: This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS: We assessed the impact of polystyrene nanospheres (PNSs; 50 nm, 1.0mg/L) on HMS-induced MCF-7 cell proliferation (HMS: 0.01-1µM, equivalent to 2.62-262µg/L) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262-262µg/L) with or without PNSs (50 nm, 1.0mg/L) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS: Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17ß-estradiol (E2) release in females. Conversely, males showed lower testosterone, E2, and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION: PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.


Nanospheres , Adult , Female , Humans , Male , Animals , Zebrafish , MCF-7 Cells , Polystyrenes/toxicity , Estrogens , Glucocorticoids , Steroids
9.
Histol Histopathol ; 39(1): 105-116, 2024 Jan.
Article En | MEDLINE | ID: mdl-37052270

Studies have demonstrated the potent effects of polyphenols on cutaneous wound healing. However, the molecular mechanisms underlying polyphenol activity are incompletely understood. Herein, mice were experimentally wounded, intragastrically treated with four polyphenols, resveratrol, tea polyphenols, genistein, and quercetin; and monitored for 14 days. Resveratrol was the most effective compound, promoting wound healing starting at day 7 after wounding, by enhancing cell proliferation and reducing apoptosis and subsequently promoting epidermal and dermal repair, collagen synthesis and scar maturation. RNA sequencing was performed in control and resveratrol-treated tissues on day 7 after wounding. Resveratrol treatment upregulated 362 genes and downregulated 334 genes. Gene Ontology enrichment analysis showed that differentially expressed genes (DEGs) were associated with different biological processes (keratinization, immunity, and inflammation), molecular functions (cytokine and chemokine activities), and cellular components (extracellular region and matrix). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that DEGs were predominantly enriched in inflammatory and immunological pathways, including cytokine-cytokine receptor interaction, chemokine signaling, and tumor necrosis factor (TNF) signaling. These results show that resveratrol accelerates wound healing by promoting keratinization and dermal repair and attenuating immune and inflammatory responses.


Polyphenols , Transcriptome , Mice , Animals , Resveratrol/pharmacology , Polyphenols/pharmacology , Cytokines , Chemokines , Wound Healing , Gene Expression Profiling
10.
Environ Res ; 246: 117929, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38157972

The high water solubility and ecotoxicity of thiamethoxam (TMX) is a potential hazard to ecosystems and human health. Here, a strain of Bacillus cereus with high TMX degradation activity was isolated from the sediment of the A2O process in the wastewater treatment plant and was able to utilize TMX as its sole carbon source. Under different environmental conditions, the degradation efficiency of TMX by Bacillus cereus-S1 (strain S1) ranged from 41.0% to 68.9% after 216 h. The optimum degradation conditions were DO = 3.5 mg/L and pH 9.0. The addition of an appropriate carbon-to-nitrogen ratio could accelerate the degradation of TMX. A plausible biodegradation pathway has been proposed based on the identified metabolites and their corresponding degradation pathways. TMX can be directly converted into Clothianidin (CLO), TMX-dm-hydroxyl and TMX-Urea by a series of reactions such as demethylation, oxadiazine ring cleavage and C=N substitution by hydroxy group. The main products were TMX-dm-hydroxyl and TMX-Urea, the amount of CLO production is relatively small. This study aims to provide a new approach for efficient degradation of TMX; furthermore, strain S1 is a promising biological source for in situ remediation of TMX contamination.


Guanidines , Insecticides , Neonicotinoids , Thiazoles , Humans , Thiamethoxam , Insecticides/toxicity , Sewage , Bacillus cereus/metabolism , Ecosystem , Nitro Compounds/toxicity , Nitro Compounds/metabolism , Oxazines/metabolism , Oxazines/toxicity , Carbon , Urea
11.
Sci Rep ; 13(1): 19404, 2023 11 08.
Article En | MEDLINE | ID: mdl-37938235

Nitrate pollution in surface water has become a significant environmental concern. Sulfur autotrophic denitrification (SAD) technology is gaining attention for its cost-effectiveness and efficiency in nitrate removal. This study aimed to investigate the structure and function of sulfur autotrophic denitrification microbial communities in systems using sodium thiosulfate (Group A) and elemental sulfur (Group B) as the sole electron donors. Metagenomic amplicon sequencing and physicochemical analysis were performed to examine the microbial communities. The results revealed that on day 13, the nitrate nitrogen removal rate in Group A was significantly higher (89.2%) compared to Group B (74.4%). The dominant genus in both Groups was Thiobacillus, with average abundances of 34.15% and 16.34% in Groups A and B, respectively. ß-diversity analysis based on species level showed significant differences in bacterial community structure between the two Groups (P < 0.001). Group A exhibited a greater potential for nitrate reduction and utilized both thiosulfate and elemental sulfur (P < 0.01) compared to Group B. This study provides a sufficient experimental basis for improving the start-up time and operating cost of SAD system through sulfur source switching and offers new prospects for in-depth mechanistic analysis.


Denitrification , Thiobacillus , Nitrates , Sulfur , Bacteria/genetics , Thiobacillus/genetics
13.
Nat Plants ; 9(10): 1709-1719, 2023 10.
Article En | MEDLINE | ID: mdl-37666961

Abscisic acid (ABA) is one of the plant hormones that regulate various physiological processes, including stomatal closure, seed germination and development. ABA is synthesized mainly in vascular tissues and transported to distal sites to exert its physiological functions. Many ABA transporters have been identified, however, the molecular mechanism of ABA transport remains elusive. Here we report the cryogenic electron microscopy structure of the Arabidopsis thaliana adenosine triphosphate-binding cassette G subfamily ABA exporter ABCG25 (AtABCG25) in inward-facing apo conformation, ABA-bound pre-translocation conformation and outward-facing occluded conformation. Structural and biochemical analyses reveal that the ABA bound with ABCG25 adopts a similar configuration as that in ABA receptors and that the ABA-specific binding is dictated by residues from transmembrane helices TM1, TM2 and TM5a of each protomer at the transmembrane domain interface. Comparison of different conformational structures reveals conformational changes, especially those of transmembrane helices and residues constituting the substrate translocation pathway during the cross-membrane transport process. Based on the structural data, a 'gate-flipper' translocation model of ABCG25-mediated ABA cross-membrane transport is proposed. Our structural data on AtABCG25 provide new clues to the physiological study of ABA and shed light on its potential applications in plants and agriculture.


Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cryoelectron Microscopy , Membrane Transport Proteins/metabolism
14.
Nat Commun ; 14(1): 4879, 2023 08 12.
Article En | MEDLINE | ID: mdl-37573431

Chloride channels (CLCs) transport anion across membrane to regulate ion homeostasis and acidification of intracellular organelles, and are divided into anion channels and anion/proton antiporters. Arabidopsis thaliana CLCa (AtCLCa) transporter localizes to the tonoplast which imports NO3- and to a less extent Cl- from cytoplasm. The activity of AtCLCa and many other CLCs is regulated by nucleotides and phospholipids, however, the molecular mechanism remains unclear. Here we determine the cryo-EM structures of AtCLCa bound with NO3- and Cl-, respectively. Both structures are captured in ATP and PI(4,5)P2 bound conformation. Structural and electrophysiological analyses reveal a previously unidentified N-terminal ß-hairpin that is stabilized by ATP binding to block the anion transport pathway, thereby inhibiting the AtCLCa activity. While AMP loses the inhibition capacity due to lack of the ß/γ- phosphates required for ß-hairpin stabilization. This well explains how AtCLCa senses the ATP/AMP status to regulate the physiological nitrogen-carbon balance. Our data further show that PI(4,5)P2 or PI(3,5)P2 binds to the AtCLCa dimer interface and occupies the proton-exit pathway, which may help to understand the inhibition of AtCLCa by phospholipids to facilitate guard cell vacuole acidification and stomatal closure. In a word, our work suggests the regulatory mechanism of AtCLCa by nucleotides and phospholipids under certain physiological scenarios and provides new insights for future study of CLCs.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Nucleotides/metabolism , Protons , Nitrates/metabolism , Phospholipids/metabolism , Arabidopsis Proteins/metabolism , Anions/metabolism , Adenosine Triphosphate/metabolism , Chloride Channels/metabolism
15.
Environ Res ; 237(Pt 2): 117004, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37643684

The overuse of thiamethoxam (THM) has threatened the survival of living organisms and it is necessary to find an environmentally friendly material to remove THM frequently detected in water. Biochar prepared from cow manure modified with ZnCl2 (Zn-CBC) was used to remove THM. Compared to the unmodified cow manure biochar (CBC), the removal ratio of THM by Zn-CBC was enhanced 35 times. In the mechanistic analysis, SEM and BET showed that Zn-CBC had a good pore structure and its specific surface area (166.502 m2 g-1) increased to 17 times that of CBC, indicating that Zn-CBC had good pore adsorption properties. The adsorption kinetic and isotherm implied that the main mechanism was chemisorption including π-π interaction and H-bonding. Furthermore, the stable graphitized structure of Zn-CBC allowed for efficient adsorption and reusability. In addition, this study constructed an intelligent prediction model using batch experiment data, and the high R2 (0.978) and low RMSE (0.057) implied that the model could accurately and quantitatively predict the adsorption efficiency. This paper provides a novel perspective to simultaneously remove the neonicotinoid insecticides and realize the resource utilization of cow manure.

16.
Viruses ; 15(7)2023 07 07.
Article En | MEDLINE | ID: mdl-37515203

Bacteriophage T4 is decorated with 155 180 Å-long fibers of the highly antigenic outer capsid protein (Hoc). In this study, we describe a near-atomic structural model of Hoc by combining cryo-electron microscopy and AlphaFold structure predictions. It consists of a conserved C-terminal capsid-binding domain attached to a string of three variable immunoglobulin (Ig)-like domains, an architecture well-preserved in hundreds of Hoc molecules found in phage genomes. Each T4-Hoc fiber attaches randomly to the center of gp23* hexameric capsomers in one of the six possible orientations, though at the vertex-proximal hexamers that deviate from 6-fold symmetry, Hoc binds in two preferred orientations related by 180° rotation. Remarkably, each Hoc fiber binds to all six subunits of the capsomer, though the interactions are greatest with three of the subunits, resulting in the off-centered attachment of the C-domain. Biochemical analyses suggest that the acidic Hoc fiber (pI, ~4-5) allows for the clustering of virions in acidic pH and dispersion in neutral/alkaline pH. Hoc appears to have evolved as a sensing device that allows the phage to navigate its movements through reversible clustering-dispersion transitions so that it reaches its destination, the host bacterium, and persists in various ecological niches such as the human/mammalian gut.


Bacteriophages , Animals , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Cryoelectron Microscopy/methods , Capsid Proteins/chemistry , Capsid/metabolism , Bacteriophage T4/genetics , Bacteriophage T4/chemistry , Protein Binding , Mammals
17.
J Environ Manage ; 345: 118566, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37423194

Free nitrous acid (FNA) is a critical metric for stabilization of ANAMMOX but can not be directly and immediately measured by sensors or chemical measurement method, which hinders the effective management and operation for ANAMMOX. This study focuses on FNA prediction using hybrid model based on temporal convolutional network (TCN) combined with attention mechanism (AM) optimized by multiobjective tree-structured parzen estimator (MOTPE), called MOTPE-TCNA. A case study in an ANAMMOX reactor is carried out. Results show that nitrogen removal rate (NRR) is highly correlated with FNA concentration, indicating that it can forecast the operational status by predicting FNA. Then, MOTPE successfully optimizes the hyperparameters of TCN, helping TCN achieve a high prediction accuracy, and AM furtherly improves model accuracy. MOTPE-TCNA obtains the highest prediction accuracy, whose R2 value gets 0.992, increasing 1.71-11.80% compared to other models. As a deep neural network model, MOTPE-TCNA has more advantages than traditional machine learning methods in FNA prediction, which is beneficial to maintain the stable operation and easy control for ANAMMOX process.


Anaerobic Ammonia Oxidation , Nitrous Acid , Bioreactors , Nitrogen , Oxidation-Reduction
18.
Bioresour Technol ; 387: 129571, 2023 Nov.
Article En | MEDLINE | ID: mdl-37506935

The high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.9 mg/L and 140.0 mg/L to 1099.8 mg/L and 868.4 mg/L, respectively. During this process, the performance of PN and DN remained stable. The microbial analysis revealed that the Nitrosomonas exhibited strong tolerance to high levels of FA, and its relative abundance was positively correlated with amoABC (R2 0.984) and hao (R2 0.999) genes. The increase in microbial diversity could enhance the resistance ability of PN against the FA impact. In contrast, high levels of FA had scant influence on the microbial community and performance of DN.


Microbiota , Water Pollutants, Chemical , Ammonia , Denitrification , Bioreactors , Nitrogen
19.
Protein Expr Purif ; 210: 106318, 2023 10.
Article En | MEDLINE | ID: mdl-37286065

Kelch-like protein 6 (KLHL6) plays a critical role in preventing the development and survival of diffuse large B-cell lymphoma (DLBCL) through its involvement in the ubiquitin proteasome system. Specifically, KLHL6 binds to cullin3 (Cul3) and the substrate, facilitating the assembly of the E3 ligase responsible for substrate ubiquitination. It is imperative to investigate the precise function of KLHL6 by conducting a structural analysis of its interaction with Cul3. Here, we present the expression, purification, and characterization of the full-length KLHL6. Our findings demonstrate that the addition of a Sumo-tag significantly enhances the production of KLHL6, while also improving its stability and solubility. Moreover, through gel filtration and negative staining electron microscopy (EM), we observed that KLHL6 adopts a homomultimeric form in solution. Additionally, we found that the presence of Cul3NTD enhances the stability and homogeneity of KLHL6 by forming a complex. Consequently, the successful expression and purification of full-length KLHL6 serve as a foundation for further investigations into the structure and function of the KLHL6/Cullin3/Rbx1 substrate complex, as well as provide a potential strategy for studying other proteins within the KLHL family that possess similar characteristics.


Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitin/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Mutation
20.
Ophthalmol Ther ; 12(4): 1929-1937, 2023 Aug.
Article En | MEDLINE | ID: mdl-37145260

INTRODUCTION: Phoropters are widely accepted for clinical use in refraction examination and visual function assessment. This study assessed the reliability of the new Inspection Platform of Visual Function (IPVF) in comparison with the conventional equipment phoropter (TOPCON VT-10) in visual function assessment. METHODS: This prospective study enrolled 80 eyes of 80 healthy subjects. The horizontal phoria at distance and near (Phoria_D and Phoria_N, respectively) was measured with the von Graefe method, negative/positive relative accommodation (NRA/PRA) was measured with the positive/negative lens method, and accommodative amplitude (AMP) was measured with the minus lens method. Data of three consecutive measurements with each instrument were evaluated using the intraclass correlation coefficient (ICC) for repeatability, and the agreement of the two instruments was evaluated using a Bland-Altman plot. RESULTS: The ICCs of the three consecutive measurements for phoria, NRA/PRA, and AMP using the IPVF instrument were high (0.87-0.96), indicating high repeatability. The ICCs of the three consecutive measurements using the phoropter were high (0.914-0.983) for phoria, NRA, and AMP, indicating high repeatability, while that of PRA was 0.732 (between 0.4 and 0.75), indicating acceptable repeatability. The 95% limits of agreement of phoria, NRA/PRA, and AMP were narrow, indicating good agreement between the two instruments. CONCLUSION: The repeatability of both instruments was high, and the IPVF instrument was slightly better in terms of PRA repeatability than the phoropter. The agreement of phoria, NRA/PRA, and AMP measured by the new IPVF instrument and phoropter was also satisfactory.


Nonstrabismic binocular dysfunctions (NBD) are common vision abnormalities. The relevant indicators involved in NBD are accommodative anomalies, convergence and divergence anomalies, and phoria. Convergence and divergence anomalies are disorders of binocular vision that result in either a failure of fusion or an inability to accurately integrate and stabilize retinal images from both eyes into a single representation. Phoria is the tendency of the eyes not to be directed towards the point of fixation, manifested in the absence or prevention of fusion. Measurement of accommodation and phoria are two particularly important components of comprehensive eye examination. Phoropter is widely used in ophthalmic clinics and optical stores for refraction examination and visual function assessment. It largely depends on the examiner's training, skill, and experience, which leads to high inter-examiner variability. In large-scale eye screening or busy hospital hours, examinees have to be inspected one by one using traditional instruments, which can be time consuming and tiring for optometrists, and can cause long queuing time for examinees. In this study, we evaluated the possibility of an alternative automatic diagnostic instrument for the assessment of binocular visual function. The platform is a new type of intelligent visual function inspection equipment with good reliability, and could be an alternative for clinicians to obtain visual function measurements with improved efficiency and fewer subjective errors. The use of this automatic instrument can avoid inter-examiner variability, helping to resolve the shortage problem of optometrists in China and offer a better testing service to eye examinees.

...